Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-439300

RESUMO

The COVID-19 pandemic caused by the novel coronavirus, SARS-CoV-2, has a global impact on public health. Since glycosylation of the viral envelope glycoproteins is known to be deeply associated with their immunogenicity, intensive studies on the glycans of its major glycoprotein, S protein, have been conducted. Nevertheless, the detailed site-specific glycan compositions of virion-associated S protein have not yet been clarified. Here, we conducted intensive glycoproteomic analyses of SARS-CoV-2 S protein using a combinatorial approach with two different technologies: mass spectrometry (MS) and lectin microarray. Using our unique MS1-based glycoproteomic technique, Glyco-RIDGE, in addition to MS2-based Byonic search, we identified 1,759 site-specific glycan compositions. The most frequent was HexNAc:Hex:Fuc:NeuAc:NeuGc = 6:6:1:0:0, suggesting a tri-antennary N-glycan terminating with LacNAc and having bisecting GlcNAc and a core fucose, which was found in 20 of 22 glycosylated sites. The subsequent lectin microarray analysis emphasized intensive outer arm fucosylation of glycans, which efficiently complemented the glycoproteomic features. The present results illustrate the high-resolution glycoproteomic features of SARS-CoV-2 S protein and significantly contribute to vaccine design, as well as the understanding of viral protein synthesis.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-438614

RESUMO

The trimeric spike protein (S) mediates host-cell entry and membrane fusion of SARS-CoV-2. S protein is highly glycosylated, whereas its O-glycosylation is still poorly understood. Herein, we site-specifically examine the O-glycosylation of S protein through a mass spectrometric approach with HCD-triggered-ETD model. We identify 15 high-confidence O-glycosites and at least 10 distinct O-glycan structures on S protein. Peptide microarray assays prove that human ppGalNAc-T6 actively participates in O-glycosylation of S protein. Importantly, the upregulation of ppGalNAc-T6 expression can profoundly enhance the O-glycosylation level by generating new O-glycosites and increasing both O-glycan heterogeneity and intensities. Further molecular dynamics simulations reveal that the O-glycosylation on the protomer-interface regions, which are mainly modified by ppGalNAc-T6, can potentially stabilize the trimeric S protein structure. Our work provides deep molecular insights of how viral infection harnesses the host O-glycosyltransferases to dynamically regulate the O-glycosylation level of the viral envelope protein responsible for membrane fusion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...